EVRENİN DÜNYASI -UZAY



Kozmoloji biliminin her zaman büyüleyici yanlarından biri, kozmolojiyle amatörce ya da profesyonelce ilgilenen herkesin, evrendeki yerimiz, evrenin yaratılışı ve varlığı gibi konulardaki soruları yanıtlama potansiyeline sahip olduğunu düşünmesidir. Büyük patlama destanının astronomlar, matematikçiler ve fizikçiler kadar teologların ve felsefecilerin de ilgilerini uyandırması hiçbir şekilde rastlantısal değildir. Merak edilen konuların başında: yıldızlar, galaksiler, karanlık madde ve kara delikler yer alır.
EN YAKIN YILDIZLAR
Güneş sıradan bir yıldızdır. Kütle ve ışıma gücü bakımından ortalamanın biraz üzerinde olmakla birlikte parlak, büyük kütleli yıldızların yanında biraz soluk be -nizli kalır. Bazı yıldızla- rın kütlesi Güneş'in kütlesinin birkaç katı, bazılarınınki ise 100 katı olabilir. Ama yakınımızdaki yıldızların tipik kütlesi Güneş'in kütlesinin üçte biri civarındadır. Yıldızlar kimi zaman çiftler halinde bulunur. Bu durumda yıldızların yörünge hareketlerini birbirine uyguladık -ları karşılıklı kütle çekim kuvvetleri belirler. Bu karşılıklı dans, astronomlara çift yıldızların kütlelerini doğrudan ölçme olanağı sağlar.
Tek başına bulunan yıldızların kütleleri, ışıma güçleri ve renkleri gözlenerek, dolaylı bir yoldan ölçülür. Bir yıldızın ışıma gücü kütlesine çok duyarlı bir biçimde bağlıdır. Kütle ikiye katlandığında ışıma gücü 10 kat artar. Yıldızın ışıma gücü arttıkça sıcaklığı da artar. Yıldız, hemen hemen mükemmel bir fırına ya da kara cisme benzer. Kara cismin sıcaklığı arttıkça, yaydığı karakteristik ışının dalga boyu kısalır, sıcaklık azaldıkça dalga boyu uzar. Bu nedenle sıcak kara cisimler mavi, soğuk kara cisimler ise kırmızı renklidir. Genelde, yaydığı ışınımın dalga boyu kara cismin sıcaklığının bir ölçüsüdür. Astronomlar bir yıldızın sıcaklığını renginden ya da başka bir deyişle ışığının tayfını elde ederek ölçerler. Yıldızlar bir dereceye kadar ideal ışınım yayıcılar olduklarından, yıldızın büyüklüğünü rengine ve ışıma gücüne bakarak anlayabiliriz: Işıma gücü yüksek, sıcak ve mavi olanlar dev; sönük, serin ve kırmızı olanlar cücedir.

GALAKSİLER
Yıldızların tek başlarına bulundukları çok enderdir. Çoğunlukla galaksileri oluşturan kümeler ve gevşek gruplar ha- linde bulunurlar.
Yirminci yüzyılın ilk çeyreğinde galaksilerin biçimlerine göre sınıflandırılabileceği ortaya çıktı. Bazıları sarmal bir yapı gösterirken diğerleri görünüş olarak belirgin bir biçim sergilemekten uzaktı. Hubble, galaksilerin yapılarını temel alan ve günümüzde hâlâ kullanılan bir sınıflan -dırma yöntemi geliştirdi. Tümü de sarmal kollara sahip olan sarmal galaksiler, kollarının görünüşüne ve merkezdeki çekirdeğin büyüklüğüne göre sınıflandırılır. Sarmal galaksiler, evrendeki çoğu yıldızın doğum yerleridir.
KARANLIK MADDE
Hemen hemen 50 yıl önce Fritz Zwichky, galaksi kümelerinin çoğunlukla ışık vermeyen bir madde türünden olduğunu fark etti. Karanlık maddenin araştırılması, 50 yıl boyunca kozmolojinin en önde gelen uğraşlarından oldu. Kesin ölçümlerin ilk kez elde edildiği 20 yıl kadar önce, galaksi kümelerindeki karanlık maddenin haritası çıkarıldı. Karanlık maddenin galaksi kümelerinden çok daha büyük ölçekteki varlığının kanıtlanması ise çok yenidir.
Galaksilerin nasıl oluştuğu hakkında hiçbir şey bilmeden karanlık maddenin nasıl araştırıldığını anlamak mümkün değildir. Galaksimiz, 10 kiloparsek yarıçapında (1 kiloparsek=1000 parsek) ve 500 parsek kalınlığında, yıldızlardan oluşan, disk biçiminde bir yapıya sahiptir. "Popülasyon 1" adı verilen ve diskte yer alan bu yıldızlar, galaksideki genç yıldızlardır. Bu yıldızlar, galaksi merkezi çevresinde çembersel yörüngeler çizen ve yıldız toplanmaları adı verilen gevşek yıldız topluluklarının yer aldığı yıldız oluşum bölgelerinde ve gençlerle birlikte yaşlı yıldızların da yer aldığı daha yüksek sayıdaki açık küme adı verilen gruplanmalarda bulunurlar. Diskteki dağılım, galaksinin ışık saçtığı için görülen yıl -dızların yaklaşık yüzde beşine eşit olan yıldızlar arası gaz ve tozun hemen hemen tamamını kapsar. Aslında moleküler yapı- daki gaz ve en genç yıldızlar yalnızca yüz parsek kalınlığında bir disk oluştururlar.

KARA DELİK NEDİR?
Kara delikler, karanlık maddenin düşünülebilecek en karanlık biçimidir. Her ne kadar doğrudan gözlenmeleri olanaksızsa da kara delikleri gözleyebilmek için astronomların dolaylı yöntemleri vardır. Görülemedikleri için karanlık maddenin mantık yoluyla bulunmuş adaylarıdır. Bunlar, Albert Einstein tarafından yaratılmış olan görecelik teorilerinden biri olan genel izafiyet teorisi tarafından öngörülmüş cisimlerdir. Özel görecelik teorisi uzay ve zamanın yapısını açıklarken genel görecelik teorisi ise uzay, zaman ve kütle çekimini tanımlar. Bu teorilerden birincisi bize, uzay ve zamanın dört boyutlu uzay zamanın değişik görünüşleri olduğunu söyler. Bu nedenle uzayda bir noktanın genellikle bir geçmişi, bir de geleceği vardır.
Uzay zamanda bir noktaya örnek olarak bir patlamayı gösterebiliriz: Patlama hem uzayda hem de zamanda özel bir noktadır. Herhangi bir gözlemci ya da herhangi bir ışık sinyalinin geleceğe doğru hareket et-tiği söylenebilir. Eğer yeterince uzağa ve yeterince uzun zamana gidebilirse, teorik olarak, bir gözlemci ya da ışık sinyali sonunda gelecek zamanda bir başka noktaya ulaşabilir. Bu kuralın bir istisnası kara delik civarında ortaya çıkar. Kara delik civarında uzay zamanda öyle bir bölge vardır ki, bu bölgedeki olaylardan hiçbir şey -ışık bile- kaçamaz. Kara delik bir tuzak yüzeydir. Bu yüzeyden içeri bir kez girerseniz, geriye dönüş yoktur!
Zaman yolculuğu mümkün mü?
Belki de birinci soru bu olmalıydı.Karanlık maddeyi ve kuvantum kütle çekimini unutun. Herkesin yanıtlamaya can attığı bir soru, bu.Uzayda yolculuk, H.G. Wells'in olağanüstü romanı ‘‘Zaman Makinesi''nden beri en gözde bilim kurgu konusu oldu. Örneğin, gelecekte ileriye doğru yolculuk yapmak kanıtlanmış bir olay. Einstein'ın görelilik kuramı, dünyayla göreli hareket eden bir izleyicinin, dünyanın geleceğine geçebileceğini öne sürer ve bu etki, atomik saatler yardımıyla da doğrulandı. Etkili zaman bükülmeleri, ışık hızına yakın bir hız gerektirir. Bu hızı yakalamak ilke olarak mümkün, ancak mühendisliğin büyük bir ilerleme kaydetmesi ve bir o kadar da para bulunması gerekir.
Geçmiş zamana gitmekse çok daha zor. Görelilik, bir izleyicinin, uzayzaman içinde yolculuk yapması ve geçmişine geri dönmesi fikrine karşı çıkmıyor. Ancak, şimdiye kadar önerilen tüm senaryolar, alışılmamış şartlar gerektiriyor.Zaman içinde geri gitmenin bir yolu, uzayda delikler bulmaktır. Kuramcılar, uzayzamanda iki noktayı birleştiren bir tünelin (yıldız geçidinin) gerçekten varolabileceğini öne sürüyor. Bunlardan birini bulduğunuzda, içine atlayıp kendinizi evrenin başka bir zamanında, hatta başka bir yerinde bulabilirsiniz.
Kuramcılar, böyle bir deliğin bulunması durumunda, zaman makinesinin de yapılabileceğine inanıyorlar.Geçmişe gitmek olanaklı olsaydı, tüm paradokslar da ardından gelirdi: yolcunun, geçmişe giderek annesini bebekken öldürmesi gibi. Neden-sonuç ilkesine, hiçbir şeyin karşı gelemeyeceğinde ısrarcı olunduğu takdirde, paradokslardan kaçınılabilir, ancak zamanda çift yönlü yolculuk, hala alışılmadık bir fikir.Bazı fizikçiler, zaman içinde yolculuğun kesinlikle mantık dışı olarak görüyor. Stephen Hawking, fiziksel nesnelerin, zaman içinde atlamalarını önlemek için bir şeylerin müdahale edeceğini varsayan ‘‘kronoloji koruma varsayımı''nı geliştirdi.
Bu, zaman makinesi yapılmasında karşılaşılan temel fiziksel engeller nedeniyle ortaya çıkabilir: örneğin, kuantum vakum enerjisi, uzaydaki deliğin hemen önünde toplanarak, deliği kapatabilir. Zaman içinde yolculuk, henüz çözülemedi, ancak hala birçok insan buna zamanını ve emeğini harcıyor. Hawking, bu araştırmalar için kaynak bulmanın zor olduğunu vurguluyor.

galaksinin yedi gizemi


 


Edwin Hubble yaklaşık 70 yıl önce galaksilerin temel doğasını keşfetti. 1990�lı yıllara gelindiğinde bile, galaksilerin nasıl doğduklarını, nasıl evrimleştiklerini ve evrende nasıl bir rol üstlendiklerini ancak söyleyebilmekteyiz. Neden galaksiler bu kadar gizemlidirler?
Astronomlar geçen 70 yıl boyunca galaksilerin araştırmasında büyük gelişmeler kaydettiler. Bugün büyük teleskoplar kullanılarak komşumuz Andromeda�yı veya diğer galaksilerinin görüntülerini daha ayrıntılı elde edilebilmektedir. Büyük galaksileri incelemek daha kolaydır çünkü çok sayıda yıldızdan meydana gelirler. Bu tip büyük galaksilerde 1 trilyon yıldız bulunur. Galaksi içinde bulunan yıldızlar birbirlerine uyguladıkları çekim kuvvetiyle başta olmakla beraber aynen Güneş�in etrafındaki yörüngelerde dönen gezegenler gibi galaksi merkezi etrafındaki yörüngelerde dolanırlar.
Gerçekten her yıldız bir galaksiye ait olup galaksi içinde bulunan büyük miktarda gazdan meydana gelmektedir. Galaksiler, evrenin temel yapı taşlarıdır. Peki bunlar nasıl meydana gelmişlerdir? Bunu yedi gizemli sorunun cevabında bulabiliriz. Bunun için önce, zaman ölçeğinde geriye giderek galaksilerin nasıl oluştuğunu ve uzayda nasıl bir dağılım gösterdiklerine bakalım. Daha sonra galaksileri tek tek inceleyip merkezlerinde neler olduğunu araştıralım. Yolculuğumuzun sonunda Galaksimizin sonunu inceleyerek, galaksilerinin doğasını bugünkü bilgilerimizle yorumlayalım.
1) Evren �kırışık� halden �galaksi üreten� hale nasıl geçti?
Kozmoloji ile uğraşan teorisyenler mükemmel bir evren modeli oluşturduklarında modelleri galaksileri içermeyebilir. Bunun nedeni, galaksilerin oluşumları hakkında çok az bilgiye sahip olmalarıdır. Büyük patlamadan sonra evrenin soğuduğu bilinir. Böyle bir durumda uzay, zamanla geçirgen bir hale gelir ve büyük patlamanın ilk zamanlarına ait ışık bu noktadan evrene yayılır. Bugün bu ışık 2.73 kelvinlik kozmik zemin ışınımı olarak görülür. Bu ilk erken ışık, büyük patlamadan 300.000 yıl sonra meydana gelmiştir. O zaman Evren bir atom çorbası halinde idi (galaksiler henüz oluşmamıştı). Patlamadan birkaç milyar yıl sonra yıldızımsı cisimler veya kuazar (QSO�s) olarak bilinen cisimler meydana gelmiştir (Şekil 1). Bugün bu cisimler evrendeki ilk galaksi büyüklüğündeki cisimler gibi görülür. Bununla birlikte, ilk kuazar oluşumu ile kozmik zemin ışınımı arasındaki zamanda ne olduğu halen bilinmemektedir. Bu çağ boyunca, evren kendisini birkaç bin kez büyütmesine karşın astronomlar bu periyottaki olayları gözlemleyemediler. İlk büyük ölçekli yapının evrende genişleyerek soğuduğu ve ilk yıldızların oluştuğu bilinmesine rağmen evrenimizin son derece önemli olan bu evresini tam olarak anlayamamaktayız.

Şekil 1. Fotoğrafta ok işareti ile görülen QSO H1821+643 numaralı kuazardır.
Kozmik zemin ışınımındaki düzensiz küçük dalgalanmaların son ölçümleri, maddenin yoğunluğundaki küçük değişimlerin kozmik zemin ışımasında ortaya çıktığını gösterdi. Bu ilkel yoğunluk dalgalanmaların daha sonraları galaksi şekline dönüşmeleri tam olarak açık değildir. Üstelik bugün yıldız ve gaz olarak gözlenen parlak maddedeki çekim, bu yapıların çökmesine neden olacak kadar da yeterli değildir.
Bu yüzden büyük patlamaya ait yaygın gazdan, galaksilerin oluşumuna geçişte yeni bir şeyi açıklamak gerekir. Bu şey görünmeyen maddedir ki, astronomlar buna �karanlık madde� adını vermektedirler.
Günümüzde bir galaksinin oluşumu için yapılan varsayım şudur: Büyük patlama evreni yarattı ve onu yüksek sıcaklığı ile pişirdi. Bu işlem parlak madde ile karanlık madde üretilene dek sürdü. Oluşan karanlık madde, çekim kuvvetiyle uzayı buruşturdu. Evren genişlerken, bu buruşukluklar etrafındaki gazı topladı ve onu soğuttu. Soğuyan gaz da çekim kuvveti altında yıldızlara dönüştü.
2) Galaksiler neden süperkümeler içinde bir yığılma gösterirler?
Galaksiler uzayda düzenli olarak dağılmamışlardır. Bunun böyle olduğunu bir teleskop ile ilkbahar zamanı gökyüzüne bakılarak görülebilir. Buna karşın parlak galaksi kümelerinin bulunduğu Virgo ve Canes Venatici takımyıldızlarında durum farklıdır. Yeni araştırmalar galaksi kümelerinin uzantılarının varlığını ortaya koydu. Bu da galaksilerin tabaka (sheet) ve ipliksi (filament) hallerde bulunduğunu ve bu yapılarında büyük boşluklarla çevrili olduğunu gösterdi. Bu galaktik tabakalar ve ipliksi uzantılar 100 milyon ışık yılı büyüklüğünde olup Samanyolu galaksisinin bin katı büyüklüğündedir.
Galaksilerin uzaydaki bu dağılımı, astronomları şaşırtmaktadır. Galaksiler böyle bir dağılım haline nasıl geldiler ? Tabakalar ve ipliksi yapılar galaksilerin nasıl oluştuğuna dair bir ipucu verebilir mi ? yoksa galaksiler oluştuktan sonra mı böyle bir kümeleme gösterdiler ? Durumun daha iyi anlaşılabilmesi için erken evrende titanik patlaması adı verilen bir patlama olmuşumu öne sürülerek bu patlamayla maddenin etrafında büyük boşluklar olan tabakalara ve ipliksi yapılara itildiği önerildi. Çoğu astronom bununla birlikte iyi bilinen bir kuvvet olan çekim kuvvetinin tabakaları ve ipliksi yapıları oluşturduğunu düşünmektedirler. Sayısal hesaplamalar, bunun ancak Doğanın erken evrendeki maddenin yoğunluğunda büyük ölçekli değişimler düzenleyip yapması halinde mümkün olduğunu gösteriyor. Tabakalar ve boşlukların yapısını açıklayan modellerin incelenmesiyle bu yapıların erken evrende meydana gelen bazı fiziksel olayların parmak izlerini taşıdığı görüldü.
Astronomlar tabakaların ve ipliksi yapıların daha iyi anlaşılabilmesi için büyük bir proje başlatmışlardır. Bu proje ile astronomlar bir milyar ışık yılı uzaklığına kadar bütün galaksilerin haritasını yaparak tabakaların ve ipliksi yapılar hakkında daha ayrıntılı bilgiler elde edeceklerini ummaktadırlar.
3) Niçin galaksilerin dış kısımları bu kadar hızlı dönmektedir?
1970�li yılların ortalarına gelindiğinde astronomlar spiral galaksilerin dönme (rotasyon) hızlarını güvenilir bir şekilde ölçebiliyorlardı; bu hız, galaksiye ait parçaların merkezleri etrafındaki dönmeleridir. Astronomların çoğunun hayret ettiği olay, galaksilerin dış bölgelerindeki maddenin beklenilenin üç katı kadar bir hızla dönmesidir. Bu ölçümleri yapmadan önce, astronomlar bir galaksinin toplam kütlesini onun içinde gözlenen yıldızlardan ve gazdan oluştuğunu kabul etmişlerdi. Bugün kabul gören görüşe göre bir galaksinin dış kısımlarının hızlı dönmesi, gene galaksinin dış kısımlarında yer alan büyük miktarda görünmeyen maddeden kaynaklanmaktadır. Gerçekten, Galaksimizde gözlediğimiz yıldızlar ve gaz, Galaksimizin parlak kütlesinin %10 unu teşkil eder. Bundan dolayı astronomlar oluşturdukları galaksi modellerinde, kullandıkları kütle parametresini daha büyük bir değerde kabul etmektedirler.
Bu fazla kütle karanlık madde biçiminde bulunur. Galaksilerin etrafındaki karanlık maddenin varlığı ilk defa 1930�lu yıllarda galaksi kümelerinin merkezlerine yakın galaksileri inceleyen astronomlar tarafından önerilmiştir. Bu bilgi 40 yıldan daha uzun bir süre akademik bir dip not olarak kalmıştır. Fakat 1990�lı yıllarda karanlık madde bir dip not olmaktan çıkmış ve Astrofiziğin en önemli bir problemi haline gelmiştir. Astronomlar evrenin %90 dan daha büyük miktarda karanlık madde içermesini pek istememektedirler.
Galaksilerde bulunan karanlık maddenin biçimi bilinmemekte olup birçok şekilde bulunabilir. Yüksek enerji astrofiziği, evrenin ilk zamanlarında çok erken evrende egzotik temel parçacıkların oluşabileceğini söylemektedir. Bunlar, proton ve nötronlardan daha ağır elementlerdi. Üretilen bu parçacıklar bugüne kadar yaşamlarını sürdürebilmişlerse, karanlık maddenin miktarına katkıları olabilir. Bu görüşe göre galaksiler, Büyük Patlama�dan sonra 1 saniye içinde oluşan cisimlerdir.
Astronomların galaksilerin oluşumları için yeterli çekim kuvvetini sağlayacak karanlık maddenin biçimi hakkında bir düşünceleri daha vardır. Fizikçiler, geçen yıllarda Galaksimizde karanlık maddeyi araştırmada etkin bir yol buldular. Galaksimizin dış halosunda yer alan gökcisimleri, Macellan Bulutsularında bulunan yıldızların gözlemlerinde etkili olmaktadır. Bu görünmeyen cisimlere MACHO (�Massive Compact Halo Objects�, �Büyük Kütleli Yoğun Halo Cisimleri�) denmektedir. Son zamanlarda keşfedilen bu cisimler cüce yıldızlar, Jüpiter büyüklüğünde gezegenler veya içlerinde yeterli termo-nükleer reaksiyonları başlatamayacak kütleye sahip olan kahverengi cüce yıldızlar olabilir.
4) Bölgeselleşme, Bölgeselleşme, Bölgeselleşme, her şey midir?



Galaksiler çevrelerine duyarlıdırlar. Yerel süper kümemiz içinde, birçok dev eliptik galaksi birçok galaksinin birbirine sıkı olarak bağlı olduğu, bu kümenin merkezinde yer alır (örneğin, M87 ve M49, Virgo kümesinin merkezinde bulunur) (Şekil 2). Spiral galaksiler ise kümeni merkezi dışındaki kısımlarında çok sayıda bulunur (örneğin, Hydra da M83, Ursa Major takımyıldızında M101 gibi). Şekil 2. Fotoğrafta M87 eliptik galaksisi görülmektedir.
Galaksilerin herhangi bir tipi, herhangi bir ortam içinde meydana gelebilir mi ? Bir tek galaksi ile büyük bir ölçekteki evren yapısı arasında bir ilişki var mı ? Bugün astronomlar galaksilerin karakteristik özelliği olan fiziksel biçimleri ile başlangıç koşulları arasında bir ilişkinin var olup olamayacağını araştırmaktadırlar.
Zengin galaksi kümelerine yol açan ilk yoğunluk dalgalanmaları seyrek bölgeleri oluşturan yoğunluk dalgalanmalarından farklı idi. Kümeleşmeye ayrılan yoğunluk dalgalanmaları bazı özel evrelerde eliptik galaksileri oluşturmaya yöneldi. Eliptik galaksiler, karanlık halolarının karşılıklı çekimleri sonucunda, diğer galaksilerin etkileşmesinden oluşmuş olabilirler.
5) Neden galaksilerin farklı tipleri mevcuttur?
Galaksiler gösterdikleri fiziksel yapıdan dolayı iki ana grupta toplanır. Bunlar �eliptik� ve �spiral� tipte olanlardır (Şekil 2 ve 3). Henüz eliptik galaksiler ile spiral galaksilerin oluşum mekanizmalarını açıklanamamaktadır. Bugün bu yapıların, galaksilerin oluşumu esnasında yeni doğan yıldızların uyguladıkları çekim kuvvetiyle oluştuğu düşünülmektedir.

Şekil 3. Fotoğrafta Hubble Uzay Teleskobu ile alınan M100 spiral galaksisi görülmektedir.
Gökyüzüne gözlediğimiz bir galaksi, büyük patlamadan arta kalan maddenin soğumasıyla meydana gelmiştir. Galaksiyi meydana getiren gaz yavaşça çökseydi ve küçük bir dönme hızına da sahip olsaydı dönen disk haline dönüşürdü. Bunun bir spiral galaksi olması ancak, gazın iç etkileşmesi sonucunda, enerji kaybetmesi ile mümkündür. Bu oluşum uzun zaman gerektirir. Galaksiyi meydana getiren gaz, ilkel galaksinin çöküşü tamamlanmadan önce, hızlı bir şekilde yıldızlara dönüşürse ve bu yıldızlar da birbirleri ile zayıf bir şekilde etkileşirse, bu sefer de bir eliptik galaksi meydana gelir.
Bazı astronomlar, bu olay için daha genel bir anlatımı tercih ederler. Bir küresel galaksinin meydana gelmesi için, hızlı yıldız oluşumunu içeren bir prosese gereksinme vardır; gazdan ibaret ilkel bir galakside hızlı yıldız oluşumu veya önceden oluşmuş iki spiral galaksinin çarpışması gibi... Küresel galaksiler herhangi bir şeydirler fakat mükemmel küreler ve bunların görünüşteki benzerliği, oluşumlarına ait delilleri içeren birçok fiziksel farkın görünmesine olanak vermiyor. Örneğin, ekseni etrafındaki dönmesi, Samanyolu�nun küresel yapıdaki �şişkin bölgesi� ni düzleştirmiştir. Bu şişkin bölge, yaz gecelerinde, Samanyolu�nun şerit halindeki parlak bölgesinin Akrep takımyıldızına doğru uzantısı şeklinde görülebilir. Bununla beraber, bazı düzleşmiş eliptik galaksiler eksenleri etrafında hiç dönmezler. Bunun yerine eliptik galaksiler, içerdikleri yıldızların üç boyutlu uzaydaki rasgele hareketlerinin etkisi ile şekillenirler. Astronomlar küresel (sferoidal) galaksilerin, bu biçimlerine nasıl geldiklerinden veya evrensel zaman ölçeğinde bu kararlı durumlarında kalıp kalmayacaklarından tamamen emin değillerdir.
Küresel yapılar (sferoidler) dinamik bakımdan �sıcak� yıldız sistemleri iken, disk galaksileri dinamik bakımdan soğukturlar; bunun anlamı, disk galaksilerindeki yıldızların üç boyutlu hareketlerinin önemsiz olmasıdır. Dalgalar, diski yalayıp geçtikleri zaman, soğuk yapılar kararsızlık gösterirler. Gerçekten, spiral disklerin çoğunun kararlılık sınırında oldukları görülüyor ve bundan dolayı spiral kol veya bar bakımından zengindirler. Bu kollar veya barlar, galaksi diskine çok miktarda gaz toplar. Bu gazlar da daha sonra birçok yıldıza dönüşür; büyük kütleli parlak yıldızlar da birçok yıldıza dönüşür; büyük kütleli parlak yıldızlar da bunlar arasında yer alır. Bu durum, galaksilerin spiral kollarının çok net olarak görülmesini açıklar; Canes Venatici�deki girdap gibi...
6) Galaksilerin merkezlerinde canavarlar mı saklanıyor?
Çoğu galaksinin merkezinde, son derece yoğun yıldız kümeleri bulunur. Galaksilerin çekirdekleri küçük, yaklaşık 1 ışık yılı genişliğinde olmakla beraber inanılmayacak derecede büyük yıldız yoğunluklarına sahiptirler. Örneğin Andromeda galaksisinin merkezindeki yıldız yoğunluğu, Güneş civarındaki yıldız yoğunluğundan bir milyon kez daha fazladır. Galaksimizin merkezi doğrultusundaki toz görüşümüzü engellemeseydi Galaksimizin merkezi, parlaklığı sıfır kadir olan (gökyüzünde kış aylarında gördüğümüz Vega yıldızı gibi) bir yıldız gibi ışıldayacaktı. Astronomlar Galaksinin merkezini, yine Galaksimizin merkezine yakın bir gezegenden gözleselerdi, gökyüzünün yıldızlarla dop dolu olacağını ve diğer galaksileri de neredeyse gözlenemiyor olacağını göreceklerdi.
Galaksilerin merkezlerine doğru gidildikçe, gaz miktarında ve yıldız sayısında bir artış olduğu gözlenir. Galakside meydana gelen evrimle yıldızlar ve gaz, zamanla galaksinin merkezine doğru toplanır ve bugün galaksilerin merkezlerinde gözlenen zengin yıldız toplulukları oluşur.
Gözlenen çoğu galaksinin merkez bölgesi yoğun yıldız topluluklarından oluşmakla beraber, bütün galaktik merkezler yukarıda anlatılan yol ile meydana gelmez.



Canes Venatici takımyıldızında bulunan NGC 4151 ve Cetus takımyıldızında bulunan M77 gibi yakın parlak galaksiler, normal galaksilerde üretilen enerjiden daha fazlasını üretirler (Şekil 4). Bunun yanı sıra bir trilyon yıldız içeren normal bir galaksinin ürettiği enerjiden yüz kez kat fazlasını üreten bir başka kozmik cisim ise kuazarlar olup normal bir galaksinin merkezi boyutlarındadır.






Şekil 4. Fotoğrafta Hubble Uzay Teleskobu ile görüntüsü alınmış M77 galaksisi görülmektedir.
Astronomlar aktif galaksilerin ve kuazarların nasıl enerji ürettiklerini ancak öğrenmeğe başlamışlardır. Çoğu astronom bu tip galaksilerin merkezlerinde büyük kütleli bir kara delik bulunabileceğini düşünmektedir. Eğer galaksilerin merkezlerinde büyük kütleli kara delikler bulunuyorsa, kara deliklerin o müthiş çekim kuvveti ile çevresinde bulunan gazı ve yıldızları kendisine çekerek bir enerji kaynağı üretiyor olabilirler. Bu düşünce de kuazarlar ile aktif galaksilerin yayınlamakta olduğu büyük enerji miktarını açıklayabilir.
Kara delikler üzerinde yapılan astronomik araştırmalar günümüzün en popüler konusunu oluşturmaktadır. Astronomlar, Hubble Uzay Teleskobunun sağlamış olduğu yüksek ayırma gücü ile yakın galaksilerin merkezlerinde kara delik arayışlarını sürdürmektedirler. Bu araştırmalar sayesinde bilim adamları kara deliklerin nasıl oluştuklarını ve davranışlarını daha iyi anlayabileceklerdir.
7) Samanyolu Galaksisine ne olacak?
Galaksiler değişir. Galaksimizde bulunan gaz yıldız şekline dönüşebileceği gibi yine yıldız halinden gaz haline dönüşebilir. Bu durumu en iyi bir yıldızın evrimini inceleyerek anlayabiliriz. İlkel yıldızın çökmesiyle meydana gelen yıldızlar, evrimlerinin sonlarında kütlelerinin büyük bir kısmını yıldızlararası ortama atarak beyaz cüce, nötron yıldızı veya bir kara delik olarak yaşamlarına son verirler. Büyük bir olasılıkla Samanyolu galaksisinde bulunan yıldızlararası gaz bu dönüşümler sonucu tükenecektir. Böylece Galaksimizde yeni yıldızlar meydana gelmemekle beraber mevcut olan yıldızlar da yavaş yavaş yaşlanacaktır. Yaklaşık bir milyar yılın birkaç 10 katı kadar zaman içinde, yıldızları yaşlandığında Galaksimizin parlaklığı yavaşça azalacaktır. Astronomlar halen diğer galaksilerde bulunan yıldızların kalıntılarını kataloglamaktadırlar. Bunlara en iyi örnek, Loe takımyıldızında bulunan M105 ile Virgo takımyıldızı da bulunan M84 gibi gaz içermeyen eliptik galaksilerdir. Yakıtla beslenmeyen kara delik ile aktif galaksi çekirdekleri, yıldız oluşumlarının durmasıyla güçlerini yitireceklerdir. Bu durumda galaksilerde bulunan gaz tükenince, bu galaksiler zamanla gözden kaybolacaklar mı?
Galaksiler, diğer galaksilerle veya çevrelerinde bulunan gaz ile etkileşerek şiddetli bir şekilde değişimler gösterebilirler. Normal galaksiler çevrelerinde bulunan cüce galaksilerle birleşerek galaksi içinde yeni yıldızların oluşmasını sağlayabilirler. Böyle bir durum gelecekte Samanyolu Galaksisi için de geçerli olacaktır. Uydu galaksimiz olan Macellan Bulutsuları birkaç milyar yıl sonra Galaksimiz ile birleşerek yeni yıldızların oluşumuna sebep olacak ve yeni bir yıldız popülasyonu meydana gelecektir.
Galaksilerin nasıl evrimleştiğini anlamak gelecek yıllarda astronomlar için en önemli konuyu oluşturacaktır. Milyarlarca yıl yol kat ederek gelen ışık, uzak galaksilerin geçmişteki halini öğrenmemizi ve düşüncelerimizin doğruluğunu gözlemlerle kontrol etmemizi sağlar. Böylece teorik olarak düşünülen bazı fikirler bu gözlemler sayesinde test etme olanağını bulmaktayız. Hele hele evrenin ilk oluştuğu zamanlara ait kozmik gökcisimlerinden olan kuazarlardan gelen ışık, kozmoloji ile uğraşan teorisyenler için çok önemlidir. Gelecek yıllarda, teknolojideki yeniliklerin astronomiye daha da yansıyarak daha güvenilir bilgiler alınacak olması galaksilerin gizemleri hakkında bizlere daha iyi bilgiler sağlayacaktır.



 

evrende galaksimiz

Galaksi veya gökada, kütleçekim kuvvetiyle birbirine bağlı yıldızlar yıldızlararası gaz, toz ve plazmanın meydana getirdiği yıldızlararası madde ve şimdilik pek anlaşılamamış karanlık maddeden oluşan sistemdir. Tipik galaksiler 10 milyon (cüce galaksi) ile bir trilyon (dev galaksi arasındaki miktarlarda yıldız içerirler ve bir galaksinin içerdiği yıldızların hepsi o galaksinin kütle merkezini eksen alan yörüngelerde döner. Galaksiler çeşitli çoklu yıldız sistemlerini, yıldız kümelerini ve çeşitli nebulaları da içerebilirler. Çevresinde gezegenler ve asteroitler gibi çeşitli kozmik cisimler dönen Güneş, Samanyolu galaksisindeki yıldızlardan yalnızca biridir.
Tarihsel olarak galaksiler gözle görülen biçimlerine göre sınıflanmışlardır. Bu sınıflamada sık karşılaşılan biçimlerden biri, ışık profili elips şekilli olan eliptik galaksidir.bu referans -404 not found- ile sonuçlanıyor Sarmal galaksiler, tozlu ve kıvrımlı kolları olan disk şekilli yapılardır. Düzensiz ya da olağan dışı biçimli galaksiler ise "tuhaf galaksiler" olarak bilinir ve tipik olarak, komşu galaksilerin kütleçekimine bağlı biçim bozulmasıyla oluşurlar. Birbirlerine yakın galaksilerin arasındaki bu tür etkileşimlerle sözkonusu galaksiler birleşebileceği gibi, yıldız oluşumu olaylarında "patlama" diye adlandırılabilecek ölçüde fazla artışların tetiklenmesiyle yıldız patlama galaksileri (İng., starburst galaxy) de gelişebilir Ayrıca, düzenli bir yapıya sahip olmayan küçük galaksilerden de düzensiz galaksiler olarak bahsedilebilir.
Gözlemlenebilir evrende 100 milyardan (1011) fazla galaksi olduğu sanılmaktadır. Galaksilerin çoğu 1.000 ile 100.000 parsek arasındaki bir yarıçapa sahip olup, genellikle birbirlerinden milyonlarca parsek uzaklıklarda bulunurlar. Galaksilerarası uzay ortalama yoğunluğu m3 başına bir atom bile düşmeyecek derecede az olan bir gazla doludur. Galaksilerin çoğu, kütleçekimi etkisi sayesinde birbirlerine bağlı “kümeler” adı verilen topluluklar oluştururlar; onlar da yine kütleçekimi etkisi sayesinde birbirlerine bağlı süperkümeleri oluştururlar. Bu daha büyük yapılar da, evrende büyük boşlukları çevreleyen tabakalar ve ipliksi yapılar olarak düzenlenmiştir.
Karanlık madde henüz çok iyi bir şekilde anlaşılamamış olmakla birlikte, öyle görünüyor ki, galaksilerin çoğunun kütlesinin yaklaşık % 90’ını karanlık madde oluşturmaktadırGözlem verileri bazı galaksi merkezlerinde dev kara deliklerin mevcut olabileceğini ortaya koymaktadır. Anlaşıldığına göre, Samanyolu galaksimiz da çekirdek kısmında böyle bir karadelik içermektedir.
Bir sanatçı tarafından hazırlanan Samanyolu Galaksisi. İki ana spiral kol çekirdekteki çubuk oluşumunun uçlarından çıkmaktadır. Güneş'imiz kollardan birinde yer almaktadır.

Galaksi adının kökeni 

Galaksi adının kökeni eski Yunanca’daki, bizim galaksimizi belirtmek üzere kullanılan “sütlü, süt gibi, sütsü” anlamlarına gelen galaxias (γαλαξίας) sözcüğü ya da "süt dairesi" anlamındaki kyklos galaktikos (κύκλος γαλακτίκος) terimidir. Bu terim ve dolayısıyla Batı kültüründe Samanyolu için kullanılan "Süt Yolu" terimi eski Yunan mitolojisindeki bir mitosdan kaynaklanır: Bir gece, Zeus ölümlü bir kadından yaptığı oğlu Herakles'i, farkettirmeden uykuya dalmış olan Hera'nın göğsüne koyar. Bebek Heracles, Hera'nın memelerinden akan sütü içecek ve böylece ölümsüz olacaktır. Fakat Hera gece uyanıp tanımadığı bir bebeği emzirdiğini farkedince onu fırlatıp atar ve boşalan memesinden çıkan süt de gece gökyüzüne fışkırıp akar. Hikayeye göre, işte geceleyin gökte sönük bir ışıkla pırıldar halde gördüğümüz “Süt Yolu” (Türkçe’de Samanyolu) denilen kuşak böyle oluşmuştur
Astronomik literatürde galaksi sözcüğü, tek başınayken baş harfi büyük yazıldığında bizim galaksimiz olan Samanyolu’nu ifade eder. Uranüs’ü keşfeden William Herschel (1738-1822) astronominin bugünkü düzeyde olmadığı yıllarda derin (uzak) gök cisimleri kataloğunu hazırladığında M31 (Andromeda Galaksisi) gibi gök cisimlerini adlandırmak üzere “spiral nebula” adını kullanmıştı.Bu gök cisimleri daha sonraki dönemlerde gerçek uzaklıkları anlaşılmaya başlandığında "devasa yıldız yığınları" olarak tanımlandı ve bu kez “ada-evren” olarak adlandırıldı. Zamanla yerini günümüzde kullandığımız “galaksi” terimine bıraktı.

Gözlem Tarihçesi 

Samanyolu 

Samanyolu'nun 360° fotoğrafik panoraması
Galaksimizin diğer galaksiler gibi dışarıdan görünüşü, içinde bulunduğumuz için, elde edilememektedir. Gökyüzünde çıplak gözle gördüğümüz, Samanyolu adını verdiğimiz ışıklı bölge ise, aslında yalnızca, galaksimizin kollarından biridir.
Antik çağda Grek filozofu Democritus (450–370 B.C.) gece gökyüzünde görünen Süt Yolu denilen ışıklı bölgenin uzak yıldızlardan oluşuyor olabileceğine dikkat çekmişti.Aristo’nun (384-322 B.C.) düşüncesine göreyse, Süt Yolu büyük, birbirine bağlı çok sayıdaki yıldızın alevlenmesinden kaynaklanmaktaydı ve bu alevler dünya atmosferinin üst kısmında yer almaktaydı 
Arap astronom İbn-i Heysem (965-1037) Samanyolu’nun ıraklık açısını gözlemleme ve ölçme girişiminde bulundu; Süt Yolu’nun ıraklık açısı yoktu, bunun üzerine “bu, Dünya’dan uzaktadır, atmosfere ait değildir” diyerek Aristo’nun görüşüne karşı çıktı.] İranlı astronom Birûni (973-1048) Samanyolu Galaksisi’nın sayısız bulutsu yıldızlar yığını olabileceği görüşünü ortaya attı. İbn Bacce ise Samanyolu’nun pek çok yıldızdan oluştuğunu ve gözümüze sürekli bu şekilde görünmesinin dünya atmosferindeki kırılımdan kaynaklanıyor olabileceğini ileri sürdü.] İbn Kayyim El-Cevziyye (1292-1350) Samanyolu Galaksisi’nın sabit yıldızlar feleğinde bir araya gelmiş çok sayıdaki küçük yıldızlardan oluştuğunu ve bu yıldızların gezegenlerden daha büyük olduklarını ileri sürdü.
Samanyolu Galaksisi’nın birçok yıldızdan oluşmasının ilk kanıtı Galileo Galilei’den geldi. 1610 yılında Samanyolu Galaksisi’nı bir teleskopla inceleyen Galileo Galilei bunun çok sayıdaki yıldızın bir araya gelmesinden oluştuğunu farketti. 1750’de İngiliz astronom ve matematikçi Thomas WrightEvrenin orijinal bir teorisi ya da yeni hipotezi” adlı eserinde galaksinin Güneş Sistemi’ne benzer tarzda, fakat daha büyük ölçekte, kütleçekim gücüyle birbirlerine bağlı çok sayıdaki dönen yıldızlardan oluşmuş bir kitle olduğu görüşünü iddia etti (ve hakliydi). Bu düşünceye göre, söz konusu yıldızların oluşturduğu ve bizim de içinde bulunduğumuz bu disk, bizim gökyüzüne bakışımız açısından, bize gökyüzünde Süt Yolu olarak görünüyor olabilirdi.
1785’te William Herschel tarafından sayılan yıldızlardan yola çıkılarak hazırlanan Samanyolu diyagramı. O dönemde Güneş galaksi merkezine yakın olduğu zannedildiğinden Güneş galaksi merkezine yakın olarak işaretlenmiştir.(Günümüzde yakın olmadığı bilinmektedir.)
Immanuel Kant 1755'deki bilimsel incelemesinde Thomas Wright'ın düşünce ve çalışmalarını biraz daha ayrıntılandırdı, galaksimizin da Güneş Sistemi’mize benzer biçimde, kütleçekim ile bir arada tutulan ve dönen bir yıldız kümesi olduğunu ifade etti. Kant ayrıca o dönemde gözlemlenebilen birkaç bulutsununda ayrı galaksiler olabilecekleri varsayımında bulundu. Samanyolu Galaksisi’nın biçimi ve Güneş’in galaksi içindeki konumu hakkındaki ilk girişim 1785’te gökyüzünün farklı bölgelerindeki yıldızları özenle sayan William Herschel’dan geldi. Herschel, Güneş Sistemi’ni merkeze yakın bir yere koyarak galaksinin biçimini gösteren bir diyagram hazırladı.
Jacobus Kapteyn, hassas bir yaklaşım sergileyerek, 1920’deki çiziminde Güneş’in merkeze yakın bulunduğu elips biçimli küçük bir galaksi tasarladı. Farklı bir yöntem uygulayan Harlow Shapley ise küresel kümeler kataloğu çalışmasında kendinden öncekilerden tümüyle farklı olarak, galaksimizi Güneş’in merkezden uzak olduğu yaklaşık 70 kiloparsek yarıçapındaki yassı bir disk biçiminde tasarladı.Her iki hatalı çalışma da galaktik düzlemde yıldızlararası toz vasıtasıyla ışığın soğurulmasını hesaba katmamıştı. Bu ancak Robert Julius Trumpler’ın 1930’da açık yıldız kümeleri üzerinde çalışırken bu etkiyi ölçmesinden sonra hesaba katılmaya başlandı ve günümüzdeki galaksi görünümü kuramlarına ulaşıldı

Samanyolu Galaksisi'nın diğer bulutsulardan ayırt edilmesi

“Büyük Andromeda Bulutsusu” adı verilen gök cisminin 1899’da çekilen fotoğrafı. Cisim sonradan Andromeda Galaksisi olarak tanımlanmıştır.
Girdap Galaksisi’nın 1845’te Lord Rosse tarafından yapılan krokisi
10. yy.’da İranlı astronom Abdurrahman el-Sufi (El Sufi adıyla da tanınan Azophi) Andromeda Galaksisi’nın ilk kayıtlı gözlemini yaptı ve onu “küçük bulut” olarak tarif etti. El Sufi aynı zamanda Yemen’den görünür olan ve Macellan’ın 16. yy.’daki yolculuğuna kadar Avrupalılar tarafından görülmemiş Büyük Macellan Bulutu’nu da tanımladı.] Bunlar Samanyolu Galaksisi haricinde yeryüzünden gözlemlenen ilk galaksilerdi. El Sufi buluşlarını 964 yılında “Sabit Yıldızlar” adlı kitabında duyurdu.
1054’te SN 1054 süpernovasının patlamasıyla Yengeç Bulutsusu’nun oluşması Çin, Arap ve İranlı gökbilimcilerce gözlemlendi. Bu bulutsu yüzyıllar sonra, Batı'da önce John Bevis (1731) tarafından daha sonra Charles Messier (1758) ve ardından Lord Rosse (1840’lar) tarafından gözlemlendi.
1750’de Thomas Wright “Orijinal bir Teori ya da Evrenin Yeni Hipotezi” (An original theory or new hypothesis of the universe) adlı eserinde Samanyolu Galaksisi’nın yıldızlardan oluşan basık bir disk olduğunu ve gece gökyüzünde görünen bazı bulutsuların Samanyolu Galaksisi’ndan ayrı olabilecekleri düşüncesini ifade etti ki, bu düşüncesinde haklı olduğu zamanla anlaşılacaktı.1755’te Immanuel Kant Samanyolu Galaksisi’ndan ayrı olan bu bulutsular için “ada evren” terimini ortaya attı.
18.yy. sonuna doğru Charles Messier en parlak 109 bulutsuyu içeren bir katalog derledi. Bunu William Herschel tarafından 5000 bulutsunun derlendiği geniş bir katalog çalışması izledi 1845’te Lord Rosse eliptik bulutsular ile spiral bulutsular arasında ayrım yapabilmesini sağlayan yeni bir teleskop yaptı
1917’de Heber Curtis Andromeda Galaksisi'ndaki (Messier nesnelerinden M31) S Andromedae adlı novayı gözlemledi, fotoğraf kayıtlarını araştırarak 11 nova daha buldu. Ayrıca bu novaların ortalama olarak bizim galaksimizdekilerden 10 kat daha soluk olduğunu saptadı. Buradan yola çıkarak da 150.000 parsek mesafede olduğu tahmininde bulundu ve spiral bulutsuların bağımsız birer galaksi olduklarını varsayan "ada evrenler" hipotezini destekledi[kaynak belirtilmeli].
1920'de esas olarak Harlow Shapley ile Heber Curtis arasında geçen, Samanyolu ve spiral bulutsuların doğasının yanı sıra evrenin boyutu hakkındaki "Büyük Tartışma" o döneme damgasını bırakmıştı. Konu ancak yeni bir teleskop kullanan Edwin Hubble’ın 1920’lerin başlarındaki çalışmaları sayesinde sonuca bağlandı. Bazı spiral bulutsuların dış kesimlerinde bireysel yıldız toplulukları olduğu ayrıntılarını gözlemlemeyi başaran Hubble, bazı sefe değişkenlerini tanımlayabildi ki, bu da kendisine bulutsuların uzaklığını hesaplayabilme imkânı verdi. Böylece bu bulutsuların Samanyolu'nun parçası olamayacak kadar uzak olduklarını ortaya çıkardıHubble ayrıca, 1936’da, hâlâ kullanımda olan bir biçimsel galaksi sınıflandırma sistemini (Hubble düzeni) ortaya atmıştır.

Modern araştırma [değiştir]

Tipik bir sarmal galaksinin döngü (rotasyon) eğimi: (A) tahmin edilen ve (B) gözlemlenen. Uzaklık galaksinin çekirdeğinden uzaklıktır.
Galaksilerin uzayda rastgele dağıldıklarını ileri süren teoriler, modern araçlarla yapılan gözlemler sonucunda önemini kaybetmiş, hepsinin belli bir düzen içinde yer aldıkları, gök cisimlerinin hepsinin belirli yasalar dahilinde hareket ettikleri anlaşılmıştır. 1944'de, Hendrik van de Hulst'un dalgaboyunu 21 cm. olarak tahmin ettiği, 1954’te gözlemlenen, yıldızlararası hidrojen atomlarından kaynaklanan mikrodalga ışınımının[37][38] ortaya çıkarılması ile galaksi incelemeleri yeni bir boyut kazandı. Çünkü, bu ışınım tozların soğurmasından etkilenmiyordu ve Doppler etkisi galaksi içerisindeki gazların hareketlerini belirlemede kullanılabilecekti. Gelişmiş radyoteleskoplarla hidrojen gazı diğer galaksilerde da belirlenebildi.
1970'lere gelindiğinde ise, Vera Rubin'in galaksilerdeki gazların dönüş hızı üzerine çalışmaları sonucunda şu husus saptandı: Galaksilerdeki yıldız ve gazların görünen toplam kütlesi, galaksilerin bu denli yüksek dönüş hızı için yeterli olamazdı; şu halde gözle görülmese de, ek kütlesiyle, hızın bu düzeyde olmasını sağlayıcı bir madde daha var olmalıydı. Böylece bu eksik kütle, görülemeyen, fakat büyük miktarlarda bulunan karanlık maddenin varlığı ile açıklandı
1990’ların başlarında Hubble Uzay Teleskobu daha ileri düzeyde gözlemlerde bulunulmasını sağladı. Örneğin galaksimizdeki görünmeyen karanlık maddenin yalnızca soluk ve küçük yıldızlardaki karanlık maddeden ibaret olamayacağı anlaşıldı. Yine bu teleskopla önceleri nispeten boş olduğuna inanılan bir gökyüzü parçasının (Hubble Derin Alan) incelenmesi sayesinde, o gökyüzü parçasının boş olmayıp galaksilerle dolu olduğu anlaşıldı ve böylece evrende 125 milyar (1.25x1011) galaksinin olması gerektiğine ilişkin kanıt bulunmuş oldu.Öte yandan gözle görülemeyen birçok tayfı gözlemleyebilen gözlem aygıtlarının (radyo teleskop, x-ışını teleskobu, kızılötesi kameralar vb.) geliştirilmesi Hubble tarafından da saptanamamış birçok galaksinin keşfedilebilmesini sağladı. Böylece sakınma bölgesi (İng. zone of avoidance) denilen “Samanyolu kuşağı” yüzünden iyi görülemeyen gökyüzü bölgesindeki galaksiler da keşfedilebildi.

Tipleri ve biçimleri 

Hubble düzeni denilen biçimsel sınıflandırmaya göre galaksi tipleri ya da sınıfları. E, eliptik galaksiler; S, sarmal (spiral) galaksiler; SB ise çubuklu sarmal (spiral) galaksileri belirtir.
Galaksiler Hubble düzeni olarak adlandırılan yaygın bir biçimsel sınıflandırmaya göre üç ana sınıfta sınıflandırılırlar: Eliptik, sarmal (spiral) ve düzensiz. Bu sınıflandırma tümüyle galaksilerin gözle görülen biçimlerine dayanır. Fakat bu sınıflandırma esas alındığında,etkin galaksilerdeki çekirdek etkinliği ya da starburst galaksilerinde önem taşıyan “yıldız doğum oranı” gibi, galaksilerin bazı önemli karakteristikleri gözardı edilmiş olur.] Bir galaksinin en yoğun kısmı çekirdeğidir. Gaz miktarı ve yıldız sayısı galaksinin merkezine doğru gittikçe artar

Eliptik galaksiler

Eliptik galaksiler görüş açısından bağımsız olarak, gerçekten elips biçimine sahip galaksilerdir. Hubble düzenine göre eliptik galaksiler daire biçimine yakınlıktan aşırı ovalliğe kadar uzanan bir yelpaze içinde kodlanır ya da adlandırılırlar. Bu yelpaze içinde daire biçimine en yakın eliptik galaksiler E0 olarak, en basık ya da en oval olanlar ise E7 olarak adlandırılır. Genellikle küçük yapılı, nispeten yıldızlararası maddesi fazla olmayan galaksilerdir.
Bu galaksilerde yeni yıldız doğum oranı çok düşüktür, yani yıldız doğumlarının durduğu veya en aza indiği galaksiler olarak düşünülebilirler; dolayısıyla açık kümelere çok az derecede sahiptirler. Bu galaksiler, ortak kütleçekim merkezini esas alan, rastgele sayılabilecek yörüngelerde dönen evrimleşmiş yaşlı yıldızların baskın (çoğunlukta) olduğu galaksilerdir. Bu bakımdan çok daha küçük olan küresel yıldız kümeleri ile bazı benzerlikler taşırlar Buna karşılık en büyük galaksiler "dev eliptik galaksiler"dir. Dev eliptik galaksiler genellikle büyük galaksi kümelerinin çekirdekleri yakınında bulunurlar

Sarmal galaksiler 

Sombrero Galaksisi, bir çubuksuz sarmal galaksi örneği
Evrendeki galaksilerın büyük bir çoğunluğu sarmal galaksilerden oluşur. Nispeten yüksek düzeyde açısal hıza sahiptirler. Sarmal galaksiler, dönen bir yıldızlar diskinden, yıldızlararası ortamdan ve genellikle daha yaşlı yıldızlardan meydana gelmiş bir şişkinlikten oluşur. Etrafı teker adlı yıldızlar topluluğu tarafından sarılı bu karın ya da çekirdek kısmından dışarı doğru nispeten parlak kollar uzanır. Hubble düzeninde sarmal galaksiler S harfiyle kodlanır; bu S harfinin yanına galaksinin bazı özelliklerini belirtmek üzere küçük harfler (a, b, c) eklenir. Bu ek harfler kolların sıkılık ya da dallanmadaki dağınıklık derecesini ve merkezî karın ya da çekirdeğin boyut durumunu gösterir. Örneğin Sa sınıfındaki galaksilerde çekirdek büyüktür, kollar ise belirsizce yayılmıştır. Sc sınıfında ise çekirdek küçüktür ve açılmış kollar ise belirgindir.
Sarmal galaksiler adlarını yıldızların oluştuğu parlak kollarına borçuludurlar. Sarmal galaksilerde kollar, merkezden dışa doğru logaritmik spiral biçimine yakın bir spirallik göstererek açılırlar. Bu, yıldızlar kitlesinin tekbiçimli dönüşüyle oluşan sapmalardan kaynaklanan bir çalkantının varlığını gösterir. Yıldızlar gibi kollar da merkez çevresinde dönmekle birlikte, kollar sabit açısal hızla dönerler. Bu şu anlama gelir: Yıldızlar hareketleri sırasında bu kollara girip çıkarlar ve galaksi merkezine yakın yıldızlar ile kollardaki yıldızların hızları aynı değildir.
NGC 1300, bir çubuklu sarmal galaksi örneği
Günümüzde galaksilerin sarmal kolları yoğunluk dalgası teorisi'yle maddenin geçici olarak artması veya sıkışması şeklinde yorumlanmaktadır. Yıldızlar bir kol vasıtasıyla yer değiştirirlerken her yıldız sisteminin uzay hızı daha yüksek yoğunluktaki maddelerin kütleçekim kuvvetiyle değişikliğe uğratılır. İşte, yolda art arda giden otoların yavaşlamasıyla oluşan harekete veya okyanustaki dalga hareketine benzetilen bu etki, galakside yoğunluk dalgalarını oluşturmaktadır
Sarmal galaksilerin çoğunda, çekirdeği bir uçtan diğerine kateden, yıldızlardan oluşmuş çubuk biçiminde bir oluşum bulunur.[48]Çubuklu sarmal galaksiler denilen bu sınıftaki galaksiler Hubble düzeninde, ardından kolların durumunu belirten bir küçük harfin (a, b, c) geldiği SB kodlamasıyla gösterilir. Çekirdekteki çubuğun çekirdekten dışarı doğru hareketlenen bir yoğunluk dalgası nedeniyle, bazen de bir başka galaksinin gelgit etkisi nedeniyle meydana gelen geçici bir oluşum olduğu düşünülmektedir.[49] İçinde bulunduğumuz Samanyolu Galaksisi da bir çubuklu sarmal galaksidir;[50] yaklaşık 30 kiloparsek yarıçapında ve bir kiloparsek kalınlıktadır. Yaklaşık 200 milyar yıldız içermekte olup kütlesi Güneş’inkinin yaklaşık 600 milyar mislidir.[51][52] Samanyolu Galaksisi 4 kısımda ele alınır: Karın, ince teker, kalın teker, hale. Disk çapı yaklaşık olarak yüz bin ışık yılıdır. İçerdiği 200 milyar yıldızın büyük çoğunluğu, diskin merkezinde toplanmıştır[kaynak belirtilmeli].

Diğer biçimler [değiştir]

Hoag nesnesi, bir halkalı galaksi örneği
“Tuhaf galaksiler” diğer galaksilerle gelgit etkileşimlerinden kaynaklanan alışılmamış özellikler gösteren galaksilerdir. Çıplak bir çekirdek ile çekirdeği çevreleyen, yıldızlardan oluşmuş bir halka ve yıldızlararası ortamdan oluşan “halkalı galaksi” buna bir örnek olarak gösterilebilir. Halkalı galaksinin bir sarmal galaksinin çekirdeğinden küçük bir galaksinin geçmesi halinde oluştuğu düşünülmektedir.[53] Andromeda Galaksisi’nın başından da böyle bir olay geçmiş olması muhtemeldir; çünkü kızılötesi ışın tekniği yardımıyla bu galaksinin çokhalkalı bir yapılanma gösterdiği saptanmıştır.[54]
NGC 5866, bir merceksi galaksi örneği. (NASA/ESA)
Bir “merceksi galaksi” (İng. lenticular galaxy) eliptik galaksi ile sarmal galaksi arasında kalan bir biçimde olup her iki galaksi sınıfının özelliklerine de sahiptir. Bu sınıftakiler Hubble düzeninde S0 olarak kodlanırlar. Belirsiz spiral kolları olmasının yanı sıra yıldızlardan oluşan eliptik bir halesi vardır.[55] Çubuklu merceksi galaksiler ise Hubble düzeninde SB0 olarak kodlanır. Bütün bu sınıflardan başka, eliptik ve spiral bir biçim altında sınıflandırılması pek mümkün olmayan bazı galaksiler daha bulunmaktadır ki, bunlar düzensiz galaksi olarak adlandırılır ve Irr I ya da Irr II olarak kodlandırılırlar. Bunlardan Irr I olarak kodlananlar düşük düzeyde bir yapılanma gösterirlerse de bu yapının biçimi biçimsel galaksi sınıflarından herhangi birine uymaz. Irr II olarak kodlanan galaksiler ise biçimsel galaksi sınıflarını andıran hiçbir yapı izi göstermezler. Düzensiz galaksilerin geçmişte birer sarmal veya eliptik galaksi oldukları, fakat sonraları kütleçekimsel kuvvetlerin etkisi altında düzensiz hale geldikleri düşünülmektedir. Düzensiz cüce galaksilerin yakın örneklerine Macellan Bulutları'nda rastlanır.

Cüce galaksiler [değiştir]

Geniş eliptik ve sarmal galaksilerin ününe karşılık evrendeki galaksilerin çoğunun cüce galaksiler oldukları görülmektedir. Bu mini galaksiler Samanyolu Galaksisi’nın % 1’i kadar olup yalnızca birkaç milyon yıldız içerirler. Kısa zaman önce yalnızca 100 parsek genişliğindeki “aşırı yoğun galaksi”ler keşfedilmiştir.[56] Cüce galaksilerin çoğu daha büyük bir galaksinin uydusu durumundadır. Samanyolu Galaksisi’nın bilinen böyle 12 kadar “uydu galaksi”si olup, keşfedilmeyi bekleyen 300-500 “uydu galaksi”si daha olduğu tahmin edilmektedir.[57] Cüce galaksiler eliptik, sarmal ya da düzensiz galaksi sınıflarında sınıflandırılabilirler. Fakat "eliptik cüce galaksiler" büyük eliptik galaksilere pek fazla benzemediklerinden “cüce küresel galaksiler” (İng. dwarf spheroidal galaxy) olarak adlandırılırlar. Kısa zaman önce keşfedilen iki cüce galaksinin herbirinin kütlesinin 10 milyon güneş kütlesi kadar olduğunun saptanması galaksilerin büyük kısmının karanlık maddeden oluştuğu varsayımını desteklemektedir.

Olağan dışı dinamik ve etkinlikler [değiştir]

Etkileşim [değiştir]

Antenler adlı iki galaksi kaynaşmayla sonuçlanacak bir çarpışma halindedir. İki galaksinin çekirdekleri büyük bir galaksi oluşturmak üzere yol almaktadır. [not 3]
Bir galaksi kümesinde bulunan galaksiler arasındaki etkileşimler nispeten sıklık göstermekte olup, evrimlerinde önemli bir rol oynarlar. Etkileşime geçmiş iki galaksi çarpışmasa da gelgit etkileşiminden dolayı hem birtakım eğrilip bükülme deformasyonlarına uğrar, hem de aralarında bir miktar gaz ve toz alışverişi olur.[58] İki galaksi arasında çarpışma, birbirlerinin tam üzerine geldikleri ve birleşmelerine imkân tanımayacak ölçüde bir momentuma sahip oldukları zaman meydana gelir. Bu denli etkileşime girmiş galaksilerdeki yıldızlar, birbirleriyle çarpışmadan, birbirlerinin arasından geçerler. Bununla birlikte gaz ve tozları etkileşime geçerler. Bu da, yıldızlararası ortamın bozulup ve parçalanıp sıkışmış hale gelmesiyle "yıldız doğumları"nın patlak vermesine neden olur. Galaksilerin çarpışması birinde ya da her ikisinde ciddi anlamda, çubuk, halka veya kuyruk benzeri eğilip bükülme bozulmalarına yol açar.[58]
İki galaksinin momentumu yeterince düşük olduğu takdirde, yani birbirlerinin içinden geçmelerini sağlayacak derecede güçlü olmadığı takdirde, etkileşim birleşmeyle sonuçlanır. Bu durumda iki galaksi daha büyük bir galaksiyi yaratacak şekilde kaynaşırlar. Bu kaynaşma etkinlikleri yeni galakside her iki galaksinin orijinal biçimlerine kıyasla farklı bir biçimsel yapıyı meydana getirici değişiklikler yaratabilir. İki galaksiden birinin daha büyük kütleye sahip olması halinde, biri diğeri tarafından, deyim yerindeyse, “yutulmuş” olur. Buna galaktik kanibalizm adı verilir. Bu tür denk olmayan kaynaşmalarda küçük galaksi yırtılır veya tamamen parçalanırken büyük galaksi pek fazla bozulmaya uğramaz. İşte galaksimiz Samanyolu halihazırda Sagittarius (Yay Takımyıldızı) cüce eliptik galaksisini ve Canis Major (Büyük Köpek Takımyıldızı) cüce galaksisini yutmak üzere "galaktik kanibalizm" sürecinde bulunmaktadır.[58]

Aşırı yıldız üreten galaksiler [değiştir]

Starburst galaksilerıne tipik bir örnek sayılan M82 (Messier 82). Normal bir galaksinin on misli oranında yıldız doğumuna sahne olmuştur.
Galaksilerdeki yıldızlar dev moleküler bulutlarda oluşan soğuk gaz rezervlerinden üretilirler. Yıldız doğumları oranının istisnai derecede yüksek olduğu galaksiler “starburst galaksi”ler adıyla bilinir. Bu galaksiler aşırı miktarda yıldız üretmeye sürekli olarak devam etselerdi gaz rezervlerini tüketerek ömürlerini iyice azaltırlardı. Fakat bu etkinlikleri genellikle yalnızca on milyon yıl kadar sürer ki, bu süre bir galaksinin ömür süresine nazaran nisbeten kısa bir süredir. "Starburst galaksi"ler evren tarihinin erken dönemlerinde daha yaygındılar.[59] Günümüzde bile bu galaksilerin, yıldız doğumları toplamına katkıları tahminen % 15 civarındadır.[60]
Starburst galaksiler tozlu gaz yoğunlaşmalarıyla ve yeni doğmuş yıldızların çokluğuyla nitelenirler ki, bu yıldızlardan bazıları çevredeki bulutları iyonize ederek içerisinde yıldız oluşumlarının gerçekleştiği H II bölgeleri yaratan büyük yıldızlardır.[61] Bu büyük yıldızlar süpernova patlamaları da üretirler ve bu patlamalarda saçtıkları maddeler çevredeki gazla çok güçlü bir etkileşime girerler. Bu patlamalar gaz bölgesinde yıldız oluşumunu sağlayan zincirleme reaksiyonları tetikler. Öyle ki bu etkinlik ancak sözkonusu bölgedeki gaz tüketildiğinde ya da dağıldığında son bulur.[59]
Starburst tipi galaksiler, genellikle galaksilerin birleşmesiyle ya da etkileşime geçmesiyle açıklanır. Starburst galaksilerin bu tür bir etkileşimle oluşmasına, M82 galaksisi tipik bir örnek oluşturur. M 82 kendisinden daha büyük bir galaksi olan M 81 ile yüzyüze gelecek şekilde yakınlaşmış ve normal bir galaksinin on misli oranında yıldız üreten bir starburst galaksi haline gelmiştir. Düzensiz galaksiler genellikle belirli aralarla starburst etkinliği sergilerler.[62]

Etkin çekirdekli galaksiler [değiştir]

Eliptik bir "radyo galaksi" olan M87'den yayılan parçacık akışı.
Gözlemleyebildiğimiz galaksilerin bir kısmı “etkin” olarak sınıflandırılır. Galaksiden çıkan toplam enerjinin önemli bir kısmı yıldızlar, toz ve yıldızlararası ortamdan değil, bir başka kaynaktan yayılmaktadır. Etkin galaksi çekirdeği için standart örnek, çekirdek bölgesindeki bir dev karadeliğin (SMBH) çevresinde oluşan bir katılım diskine dayanır. Bir etkin galaksi çekirdeğinin ışınımı maddenin diskten hareketle kara deliğe doğru düşmesi sırasındaki kütleçekimsel enerjiden kaynaklanır.[63] Bu tür kozmik cisimlerin % 10’unda, yarıçapları bakımından birbirine zıt bir enerji akışı çifti, çekirdekten ışık hızına yakın hızlarda parçacıklar fırlatır. Bu akışları üreten mekanizma, yani bu akışların işleyişi henüz anlaşılamamıştır.[64]
X ışınları şeklinde yüksek enerji ışınımları yayan etkin galaksiler ışıklılıklarına bağlı olarak "Seyfert galaksileri" ya da kuasar’lar olarak sınıflanırlar. Kuasar’lara benzeyen bir başka etkin galaksi türü de blazarlardır. Bunların Dünya’ya doğru yönelmiş bir rölativistik akışı oldukları gözlemlenmiştir. Radyo galaksi denilen etkin galaksiler ise bu rölativistik akışlarından radyo frekansları yayılan galaksilerdir. Muhtemelen, bir galaksi çekirdeği türü olan ve LINER (İng. Low-Ionization Nuclear Emission-line Regions) kısa adıyla tanınan çekirdekler de etkin çekirdeklerdir. LINER tipindeki galaksilerin yaydıklarında düşük ölçüde iyonize öğeler baskındır. Bize yakın galaksilerin yaklaşık üçte biri LINER çekirdek türüne sahip galaksiler olarak sınıflanırlar.[65][66][67]

Oluşma ve evrim [değiştir]

Galaksilerin ortaya çıkma ve evrimlerinin incelenmesi bir bakıma galaksilerin nasıl meydana geldikleri ve evren tarihinde nasıl bir evrim yolu izledikleri sorularının yanıtlanması girişimleridir. Bu alandaki bazı teoriler geniş ölçüde kabul görmekle birlikte, bu alan astrofizikte halen ilerlemeler bekleyen etkin (araştırmaların sürdüğü) bir alandır.

Oluşma [değiştir]

Karanlık maddenin 520 milyon ışık yılı uzaklıktaki ve 100 milyon ışık yılı kalınlıktaki bir uzay dilimindeki dağılımı. Kümeler rastgele değil, bir yapıdaki teller ya da ipliksiler gibi dizilmişlerdir. Bu koordinat sisteminde Coma (Saç), Virgo (Başak) ve Perseus (Kahraman) kümeleri işaretlenmiştir.
Evrenin halihazırdaki erken modelleri Big Bang kuramına dayanmaktadır. Big Bang olayının başlangıcından 300.000 yıl sonra hidrojen ve helyum atomları rekombinasyon denilen bir olayla oluşmaya başladılar. Bu dönemde hemen hemen tüm hidrojen nötrdü (iyonize olmamış), ışığı kolaylıkla soğurabilir haldeydi ve yıldızlar henüz oluşmamışlardı. Dolayısıyla bu döneme Karanlık Çağlar adı verilir. Yoğunluk kararsızlıklarının (ya da anizotropik düzensizliklerinin) olduğu bu ilk maddede büyük yapılar belirmeye başladılar. Baryonik madde kütleleri karanlık maddenin soğuk halelerinde yoğunlaşmaya başladılar.[68] Bu ilk yapılar sonradan, günümüzde gördüğümüz galaksiler haline geleceklerdi.
Galaksilerin bu erken durumuna ilişkin kanıt 2006’da IOK-1 galaksisinin keşfedilmesiyle elde edildi. Bu galaksi 6.96 gibi olağan-dışı yüksek bir kırmızıya kayma içerisindeydi ki, bu da Büyük Patlama başlangıcından 750 milyon yıl sonra meydana geldiğini gösteriyor ve şimdiye dek gözlemlenenler içinde en uzak ve en eski galaksi olduğunu ortaya koyuyordu.[69] Her ne kadar bazı bilim insanları Abell 1835 IR1916 gibi başka gök cisimlerinin IOK-1’den daha yüksek bir kırmızıya kayma içerisinde olduğunu ileri sürmüşlerse de, şimdilik genel kabul, yaşı ve bileşimi bakımından IOK-1’e öncelik vermektedir. Böyle öngalaksiların (protogalaksi) varlığı, bunların Karanlık Çağlar denilen dönemde oluşmuş olabilecekleri fikrini akla getirmektedir.[68]
Bu tür erken galaksi oluşumlarının ortaya çıkış süreci astronomide henüz tartışmaya açık temel meselelerden birini oluşturmaktadır. Bu konuya ilişkin teoriler iki kategoride ele alınabilir:
  • “Yukarıdan aşağı teorileri”ne göre, öngalaksiler yaklaşık yüz milyon yıl süren büyükölçekli ve eşzamanlı bir çökmeyle oluşmuşlardır. Bu teorilere ilişkin modellerden biri kısa adıyla ELS (Eggen–Lynden-Bell–Sandage) modeli olarak bilinir.[70]
  • “Aşağıdan yukarı teorileri”ne göre, önce küresel yıldız kümesi gibi küçük yapılar oluşmuş, bu küçük yapılar da birleşerek galaksileri meydana getirmişlerdir.[71]. Bu teorilere ilişkin modellerden biri kısa adıyla SZ (Searle-Zinn) modeli olarak bilinir.
Bu teoriler artık büyük karanlık madde halelerinin muhtemel varlığını da hesaba katarak yeniden düzenlenmek durumundadır. Öngalaksiler oluşmaya ve büzülmeye başladıktan sonra, bunlarda ilk hale yıldızları (Popülasyon III yıldızları, III. kuşak yıldızlar) ortaya çıkmışlardır. Bu yıldızlar tümüyle hidrojen ve helyumdan meydana gelmiş büyük yıldızlardı. Bu iri yıldızlar yakıt rezervlerini hızla tüketip süpernovalar haline geldiler ve yıldızlararası ortama ağır elementler saldılar.[72] Bu “ilk kuşak yıldızları” çevredeki nötr hidrojeni iyonize ederek, uzayda ışığın yolculuk etmesine olanak veren oluşumlar yarattılar.[73]

Evrim [değiştir]

Yeni oluşmuş bir galaksi olduğu düşünülen I Zwicky 18 (aşağıda, solda)
Bir galaksinin oluşmasını sağlayıcı anahtar yapılar, Big Bang'ın başlangıcına kıyasla, bir milyar yıl içinde ortaya çıkmışlardır. Bunlar küresel yıldız kümeleri, dev kara delikler ve II. kuşak (yaşlı) yıldızlarından oluşan galaktik “karın”dır. Öyle görünüyor ki, dev kara delikler, galaksilerin büyümelerinin düzenlenmesinde anahtar bir rol oynamışlardır.[74] Bu erken dönemde galaksiler büyük ölçüde yıldız doğumları yaşamışlardır.[75]
Sonraki iki milyar yıl sırasında, biriken madde galaktik disk içine yerleşmiştir.[76] Bir galaksi, yaşamı boyunca, kendine yüksek hız bulutları ve cüce galaksilerden çektiği maddeleri katar.[77] Bu maddeler çoğunlukla hidrojen ve helyumdur. Yıldızların doğum-ölüm çevrimi, yavaş yavaş ağır elementlerin salınmasını artırır ki, bu, sonradan gezegenlerin oluşmasına imkân sağlayacaktır.[78]
Çarpışmalarının ve kütleçekimsel etkileşimlerinin galaksilerin evrimi üzerinde hatırı sayılır bir etkisi vardır. Erken dönemde galaksi birleşmeleri daha yaygındı ve galaksilerin çoğu, biçimleri bakımından “tuhaf galaksiler” (İng. peculiar galaxy) sınıfındaydılar.[79] Yıldızlar arasındaki uzaklık yeterince büyük olduğundan, çarpışan galaksilerdeki yıldızlar bu çarpışmadan etkilenmezler, yani galaksilerin kendileri gibi değişikliğe uğramazlar. Bununla birlikte, spiral kolları oluşturan gaz ve tozun kütleçekim etkisiyle sıyrılması, “gelgit kuyruğu” denilen bir yıldız zincirinin meydana gelmesine neden olur. Bu tür oluşumların örnekleri NGC 4676[80] ve Antenler Galaksisi[81] adıyla bilinen çarpışan galaksilerde görülebilir.
NGC 4676, çarpışmak üzere olan iki galaksi (Fare Galaksileri). Fotoğraf Hubble Uzay Teleskobu tarafından çekilmiştir.
Sarımsı galaksilerden oluşan Abell 1689 galaksi kümesi, Hubble Uzay Teleskobu
Bu tür bir etkileşimin bir örneği de Samanyolu Galaksisi ile komşusu Andromeda Galaksisi’dır. Her iki galaksi birbirlerine 130 km/s hızla yaklaşmaktadır ve hızlarını etkileyen yan hareketler gözardı edilirse, yaklaşık 5-6 milyar yıl sonra çarpışacaklardır.[82]. Samanyolu Galaksisi daha önce hiç bu kadar büyük bir galaksi ile çarpışmamış olsa da, daha önce cüce galaksiler ile çarpışmış olduğuna ilişkin kanıtlar artmaktadır[kaynak belirtilmeli]. Böyle büyük ölçekli çarpışmalar nadirdir ve zaman geçtikçe böyle iki denk galaksinin birleşmesi daha nadir hale gelmektedir.[82] Parlak galaksilerin çoğu ömürlerinin son milyar yıllarında böyle kökten bir değişikliğe uğramazlar.[83]

Gelecek [değiştir]

İlkel yıldızın çökmesiyle meydana gelen yıldızlar, evrimleri boyunca kütlelerinin büyük bir kısmını yıldızlararası ortama atarak beyaz cüce, nötron yıldızı veya bir kara delik olarak evrimlerine son verirler. Günümüzde yıldız doğumlarının çoğu serin gazın pek tükenmemiş olduğu küçük galaksilerde meydana gelmektedir.[79] Samanyolu Galaksisi gibi sarmal galaksiler, spiral kollarındaki yıldızlararası yoğun hidrojen moleküler bulutlarına sahip oldukları sürece yalnızca yeni kuşak yıldızlar üretirler.[84] Bu gazdan artık yoksun olduklarından eliptik galaksiler ise yeni yıldızlar üretemezler.[85] Mevcut hidrojen rezervleri yıldızlarca tüketilip ağır elementlere dönüştürüldüğünde yeni yıldız doğumları meydana gelemez.[86] Yıldızları yaşlandıkça galaksinin parlaklığı da giderek azalır.
İçinde bulunduğumuz yıldız oluşum çağının yüz milyar yıl süreceği tahmin edilmektedir. Kızıl cüceler gibi çok daha küçük ve giderek soluklaşan yaşlı yıldızların olacağı sonraki yıldız çağının 10-100 trilyon yıl süreceği düşünülmektedir. Bu “yıldız çağı”nın sonunda galaksiler şu sıkışık cisimlerden ibaret olacaklardır: Kahverengi cüceler, beyaz cüceler (soğumuş kara cüceler), nötron yıldızları ve kara delikler. Ardından kütleçekimsel gevşemenin sonucu olarak tüm yıldızlar kara deliklere düşecekler ya da çarpışmalar sonucunda galaksilerarası uzaya fırlatılacaklardır.[86][87]

Büyük ölçekli yapılar [değiştir]

Seyfert Altılısı. 6 üyeli olduğu sanılan bir “yoğun galaksi grubu”
Evrende galaksiler tek biçimli bir şekilde dağılmadıkları gibi tümüyle düzensiz bir şekilde de dağılmamışlardır. Gökyüzüne ilişkin "derin alan" araştırmaları galaksilerin genellikle birbirlerine bağlı bir şekilde topluluklar oluşturduğunu ortaya koymuştur. Milyarlarca yıl boyunca bir başka galaksiyle etkileşime geçmemiş galaksiler çok nadirdir. Şimdiye dek araştırılan galaksilerdan yalıtılmış halde oldukları gözlemlenenlerin oranı yalnızca % 5’tir. Kaldı ki bunların geçmişlerinde bir başka galaksiyle etkileşime geçmiş olmaları, çarpışmış olmaları, hatta, halen küçük galaksilerden oluşmuş uydulara sahip olmaları mümkündür. Yalıtılmış durumda bulunan galaksilerde yıldız doğumları, sahip oldukları gazlar diğer galaksilerdeki gibi etkileşimlerle sıyrılmamış olduklarından, yüksek bir oran gösterir.[88]
Büyük ölçekli skalada evren sürekli bir genişleme halindedir ki, bu da bireysel galaksiler arasındaki ortalama uzaklığın artmasına neden olmaktadır. Buna karşılık galaksi toplulukları karşılıklı kütleçekimsel etkileri sayesinde lokal anlamda bu genişlemeyi aşabilmektedirler. Bunlar evrenin erken döneminde karanlık maddenin sürüklemesi sayesinde kümelenmiş topluluklardır. Daha sonra bunlardan birbirine yakın gruplar bir araya gelerek galaksi kümelerini meydana getirmişlerdir. Bu bir araya gelme süreci bir kümedeki galaksilerarası gazın çok yüksek sıcaklıklara gelme derecesinde ısınmasına (30 milyon-100 milyon K) neden olur.[89] Bir kümedeki kütlenin yaklaşık % 70-80’i karanlık madde türündedir, %10-30’u bu ısınmış gazdan oluşur ve geri kalan az kısım da galaksiler olarak görünen maddedir.[90]
Evrendeki galaksilerin çoğu kütleçekimsel olarak birbirlerine bağlıdır; her galaksi, kütleçekimsel olarak, belirli bir sayıdaki diğer galaksilere bağlıdır. Böylece küçükten büyüğe doğru kümelenmeli bir yapı hiyerarşisi bulunur. Bunların en küçüğü galaksi gruplarıdır. (Galaksi sayısı 100’ün altında olduğu zaman bu topluluklara, gruplar ve kümeler arasındaki sınırlar belirgin olmasa da, galaksi grubu denir.) Kütleçekim kuvvetiyle bir arada tutulan bu toplulukların en yaygın tipi galaksi kümeleri olup, evrendeki galaksilerin çoğunu içerirler.[91]
Dünya’dan 1 milyar ışık yılı uzaklık içinde süperkümelerin dağılımını gösteren evren atlası. Burada yaklaşık 63 milyon galaksi gösterilmektedir.
Genellikle birkaç megaparseklik bir bölgede bir araya gelmiş binlerce galaksiyi içeren yapılar “küme” olarak adlandırılır. Galaksi kümesi ya da galaksi kümesi kütleçekimi sayesinde birbirlerine bağlı yüzden fazla galaksinin oluşturduğu kümedir. Galaksi kümeleri biçimleriyle (özel, küresel, simetrik vs.), dağılımlarıyla veya galaksi sayılarıyla (sayı birkaç bine çıkabilir) nitelenirler. Böyle bir grup ya da kümeye bağlı kalabilmek için her üyenin, yani her galaksinin hızının topluluktan kaçıp gidecek derecede yüksek olmaması, bir başka deyişle bunu önleyecek derecede düşük bir hızı olması gerekir. Buna karşılık yetersiz bir kinetik enerji sözkonusu olduğunda da, topluluk galaksi birleşmelerinin olacağı bir evrim geçirir; evrim sonucunda topluluğun dönüştüğü yeni hali, daha az sayıda galaksiden oluşuyor olacaktır.[92] Galaksi kümelerinde genellikle tek bir "dev eliptik galaksi" baskın olur. “En parlak küme galaksisi” adı verilen bu dev, zamanla, uydu haline getirdiği diğer galaksileri gelgit etkisiyle tahrip eder ve yutup kendi kütlesine katar.[93]
Süperkümeler galaksi kümeleri, galaksi grupları ve bazen de bireysel galaksiler halinde onbinlerce galaksi içerirler. Bir milyar ışık yılı uzunlukta olabilen bu muazzam büyüklükteki yapılarda, aralarında büyük boşluklar olan galaksiler, rastgele değil, bir yapıdaki teller gibi dizilmişlerdir.[94] Süperküme skalasının daha üzerinde evrenin izotropik ve homojen olduğu düşünülür.[95] Galaksilerin yaklaşık % 90’ı bir kümeye ya da bir süperkümeye dahildir[kaynak belirtilmeli].
Samanyolu Galaksisi Yerel Grup (İng. Local Group) adı verilen 30 civarında galaksi içeren bir galaksi grubunun üyesidir. Bu, yarıçapı yaklaşık bir megaparsek olan bir gruptur. Bu grupta Samanyolu ve Andromeda en parlak iki galaksidir. Grubun diğer üyelerinin birçoğu bu iki galaksinin uyduları ya da yoldaşları olan cüce galaksilerdir.[96] Yerel Grup’un kendisi de Başak Süperkümesi’nin içindeki bir bulutumsu yapının bir parçasıdır.[97]

Çoklu dalgaboyu gözlemleri [değiştir]

Kızılötesiyle saptanan, Samanyolu’nun ötesindeki galaksi dağılımını gösteren panorama
Samanyolu Galaksisi’nın dışındaki galaksilerin varlığının keşfedilmesinden sonra, bunların ilk gözlemleri genellikle, gözle görülür ışığın kullanıldığı gözlemlerdi. Yıldızların çoğu ışık yaydıklarından, galaksileri oluşturan yıldızların gözlemi optik astronominin temel etkinliklerinden biridir. Optik astronomiden iyonize H II bölgelerinin ve tozlu kolların dağılımının incelenmesinde de yararlanılabilmektedir. Fakat yıldızlararası ortamda mevcut toz, gözle görülür ışıkla gözlemlendiğinde soluk görülmektedir. Buna karşılık uzak-kızılötesi ışınlarla daha saydam görülebilmektedir[kaynak belirtilmeli].
Günümüzde optik astronominin yetersiz kaldığı alanlarda artık çeşitli dalgaboylarından da yararlanılmakta ve bu alanda çeşitli aygıtlar kullanılmaktadır. Modern yöntemlerden bazıları şunlardır:
  • Kızılötesi: Uzak-kızılötesi ışınlar gerek dev moleküler bulut bölgelerinin içinin, gerekse galaksi çekirdeklerinin içinin ayrıntılı olarak gözlemlenebilmesinde kullanılabilmektedir.[98] Kızılötesi aynı zamanda evren tarihinin çok erken döneminde ortaya çıkmış uzak, kırmızıya kaymadaki galaksilerin gözlemlenmesinde de kullanılabilmektedir. Su buharı ve karbondioksit kızılötesi tayfın işe yarar kısımlarının belirli bir miktarını soğurduklarından kızılötesi astronomisinde artık yüksek irtifalardaki, yani uzaydaki teleskoplar kullanılmaktadır.
  • radyo frekansları: Galaksilerin gözle görülen ışık dışındaki araçlar kullanılarak yapılan ilk incelemesi radyo frekansları kulllanılarak yapılmıştır. Atmosfer 5 MHz ile 30 GHz. arası frekanslar için geçirgendir (daha aşağı sinyaller iyonosferce bloke edilmektedir)[99] Etkin çekirdeklerden yayılan akışlar büyük radyo interferometre aygıtlarıyla saptanabilmektedir. Radyoteleskoplar ise nötr hidrojeni, erken dönemdeki, galaksileri oluşturmak üzere sonradan çöken iyonize olmamış maddeyi gözlemleyebilmektedir.[100]
  • Morötesi ve X ışını: Morötesi ve X ışını teleskopları galaksilere ilişkin yüksek enerji etkinliklerini gözlemleyebilmektedir.[101] Örneğin X ışınları sayesinde galaksi kümelerindeki sıcak gazın dağılım haritası çıkarılmıştır. Yine galaksilerin çekirdeklerinde dev kara deliklerin varlığı X ışını astronomisi sayesinde doğrulanmıştır.[102]